
Abstract-Brain surface current density reconstructions are 
widely used to analyze magnetoencephalographic data arising 
from electrical activity in the human brain. Commonly, this 
mapping is performed in single subjects. We present a 
methodology to apply brain surface current density mapping to 
group studies. The technique includes stepwise transformation 
of the magnetic sensors into a standard sensor system and linear 
scaling of individual heads in Talairach space. We demonstrate 
the usefulness of the technique with a comparison of the motor 
activation in pianist and non-pianist while listening to piano 
pieces. 
Keywords -  Inverse problems, Biomagnetism 

 
I. INTRODUCTION 

 
In magnetoencephalography (MEG), one of the common 

types of data analysis is the reconstruction of the sources 
which produced the magnetic field measured. This analysis 
involves the estimation of the sites of cortical activity, as well 
as the estimation of the strength and orientation of this 
activation. Brain surface current density mapping is one of 
the most widely used techniques for the solution of this non-
unique inverse problem. However, the standard 
implementations of brain surface current density mapping are 
not suited for group studies, where one would like to compare 
groups of patients or volunteers. Thus, we developed a 
methodology to perform brain surface current density 
mapping in group studies. The following paragraph gives an 
introduction to the study which serves as an example for our 
new methodology. 

Musicians learn and perform quite complex trains of 
movements. They frequently report that listening to a well 
trained piece of music can trigger the associated movements 
(e.g. finger movements in pianists). This leads to the question 
whether the mere perception of music can involuntarily evoke 
the motor cortex activity needed to produce the same music. 
Using MEG we investigated the motor activation related to 
musical stimuli in pianists and non-pianists. In order to focus 
on the involuntary aspect of the activation of the motor cortex 
we chose a task that was completely unrelated to movements. 
If there was indeed an involuntary motor activation we would 
have expected increased activity in the motor areas in 
pianists, but not in non-pianists. Additionally, for activity 
originating from the primary motor cortex a spatial 
dissociation between the activity related to notes played with 
different fingers had to be expected. 
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A. Data Acquisition 
 

The study was carried out on 20 volunteers; 10 had a 
history of piano playing of at least 7 years (6 female; age 21.4 
± 3.1; all right handed). The other 10 subjects (all female; age 
21.9 ± 2.8; one left-handed) had a comparable experience in 
producing music (11.9 ± 4.0 years vs. 13.2 ± 2.3 years in 
pianists). All of the non-pianists were singers in a university 
chorus. Some of them had played an instrument other than 
piano in the past (3 x strings, 5 x flute) for 4.8 ± 4.2 years. All 
subjects gave written informed consent to participate in the 
study. The study was approved by the ethics committee. 

The stimulus material consisted of 24 sequences of well-
known piano pieces, generated on a MIDI based synthesizer. 
All pieces were typical piano pieces without singing text or 
singing tradition and were played on a piano in order to avoid 
undesired silent singing. For each of the pieces, a second 
version existed, with one note out of key (roughly in the 
middle of the piece). These pieces were used as filler items. 
All pieces were played in a single voice (melody only, no 
bass) and contained between 18 and 64 notes of the principal 
theme. They where presented in a randomized sequence of 
192 items with 3 seconds inter-stimulus interval. Each of the 
48 pieces (24 correct and 24 incorrect) occurred exactly 4 
times. The resulting 192 stimuli were divided into 4 block 
with several minutes break in between. Their sequence was 
balanced by presenting them in inverse order to half of the 
subjects in each group. The notes of the presented pieces 
were shown to the subjects before the experiment. The 
volume was adjusted to 45 dB above the individual hearing 
threshold at 1 kHz (separately for left and right ear). 

Because this study focused on the involuntary activation 
of motor areas, the task for the subjects had to be unrelated. 
They were instructed to detect a certain piece of music and 
press a button (with the thumb of their dominant hand) when 
this piece contained a wrong note. The response button was 
held by the dominant hand during the entire experiment, the 
thumb resting on the button and the hand resting on the tight. 
They were further asked to relax, keep their heads and eyes 
still, and refrain from blinking as much as possible. The task 
was accomplished correctly by all subjects. 

The measurements were performed with the subjects 
sitting with their eyes open in a magnetically shielded room. 
A total of 148 channels of MEG (BTi, MAGNES II, 
magnetometers), 2 channels of EOG (horizontal and vertical, 
bipolar), and 2 channels of EMG (bipolar) were recorded. 
The EMG was measured to make sure that no real movements 
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were carried out (bipolar over both extensor and flexor 
digitorum communis muscles). EOG was used to detect eye 
movements. The sampling frequency was 506.7 Hz (band-
pass 0.1 to 100 Hz). The position of the head with respect to 
the dewar was determined before and after each block. 

In order to minimize superposition of the fields evoked by 
different notes, the trigger points were selected at the onsets 
of notes with at least 500 ms distance to both the previous and 
the following note. These notes were approximately equally 
distributed over the entire lengths of the pieces. Furthermore, 
all trials containing eye blink or movement artifacts and all 
trials associated to stimuli containing wrong notes were not 
used. This yielded about 225 sweeps per block average. Two 
additional sets of averages were computed by taking only 
those notes into account that are preferably played by the 
little finger or the thumb, respectively. The rating was done 
by a professional musician. This yielded about 30 sweeps per 
block and finger condition.  

Due to the large drifts in the MEG signals it was 
necessary to perform a baseline correction per sweep. 
Because motor activity is to be expected from several 
hundred milliseconds before to several hundred milliseconds 
after the onset of the notes, there is no signal-free stretch of 
data. This makes it inevitable that the motor activity is 
diminished by the baseline correction. In order to gain the 
maximum statistical power, the baseline was chosen to cover 
the strongest non-motor activity, i.e. the primary auditory 
components (20..250 ms). Note that primary auditory 
components mainly consist of higher frequencies which are 
not projected into the analysis interval by a baseline of 230 
ms length. We have to be aware, however, that part of the 
(slow) motor activity found in the analysis interval might 
originate from the baseline interval. 

 
B. Transformation to average sensor positions 

 
The averages of the 4 blocks belonging to one subject 

were transformed to an average sensor position using a source 
space projection scheme [1] and averaged. This source space 
projection scheme included an inverse computation where the 
sources were distributed on a sphere within the head. A 
minimum norm algorithm was employed to performed this 
inverse computation. Afterwards, a forward computation 
from the estimated source distribution allowed the prediction 
of the MEG data at the averaged sensor positions. The 
resulting subject averages were transformed again to the 
average sensor position of all subjects within each group 
(pianists or non-pianists). This two stage procedure proved 
more stable than the immediate transformation of the blocks 
to the global standard position. Now, for each subject, an 
average was available as if measured at the same sensor 
position, rendering the computation of grand averages and 
statistics possible. 
 
 
 

C. Brain surface current density mapping 
 

A localization of the sources of the MEG was performed. 
Because the targeted activity in the primary motor cortex is 
expected to suffer a great deal of both spatial and temporal 
overlap by other activity, we chose a localization scheme that 
does not require any a priori knowledge on the nature of the 
generators. This method, referred to as brain surface current 
density mapping [2], reconstructs tangential currents on the 
surface on the standard brain model. 

This standard brain has been obtained by averaging a 
number of Talairach-scaled MRI scans. Then, the brain 
surface was extracted and triangulated (about 1100 triangles). 
The resulting model was used to construct a boundary 
element model, as well as to define the brain surface where 
the tangential currents were reconstructed. The surface for the 
source reconstruction was eroded by 1 cm in order to avoid 
numerical problems with the boundary element model. For 
every individual, the sensor array was linearly scaled in order 
to preserve the principal distances between the head surface 
and the sensors and therefore to account for different head 
sizes and shapes. Nasion, left and right ear and Cz anatomical 
landmarks of the individual head (originating from the 
Polhemus digitizer) were projected onto the surface of the 
standard head model and the sensor array was scaled by the 
distances between projected and original landmarks. 
The data analysis was performed using ASA (A.N.T. 
Software B.V., Enschede, Netherlands). 
 

III. RESULTS 
 

We applied the brain surface current density method to  
the separate averages of the notes preferably played by the 
thumb and the little finger. The difference between pianists 
and non-pianists are depicted in Fig. 1. There is a clear 
dissociation between the localization of thumb and little 
finger, being separated about 8 mm in inferior-superior 
direction (p=0.05, multivariate test: thumb and little finger; 
inferior and superior region; source strength). This is in 
agreement with the motor homunculus and confirms the 
involvement of the primary motor cortex. Moreover, the 
Talairach coordinates (thumb: F c 3; little finger: E3 c 2), are 
in agreement with literature values for the hand area of the 
primary motor area (e.g. E-F b-c 3 in a PET study by Carey et 
al. [3]). We found additional activity in the left temporal 
region for both conditions. In the little finger condition the 
right occipital lobe was active, too. 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Brain surface current density mapping results. The 
plots show the differences of the current source density 
between pianists and non-pianists group averages plotted on 
the surface of a standard MRI (light gray). The left brain 
displays the BSCD result for the little finger and the right 
brain for the thumb. Both centers of activation are indicated 
by a circle. The center of activation associated with the thumb 
is more left inferior than the center of activation for the little 
finger.  
 
 

IV. DISCUSSION 
 

The aim of this study was twofold. First, we succeeded to 
show that brain surface current density mapping can be 
applied to group studies. Second, we could demonstrate that 
the mere perception of well-trained piano music can 
involuntarily evoke motor cortex activity in pianists. 
Moreover, we provide strong evidence that primary motor 
activity is involved in this process. However, there is no 
execution of movements.  

Recently, there has been a different attempt to provide 
statistical processing of current density reconstruction results  
in group studies [4]. Both this previous approach and the one 
introduced in this paper have the advantage of being straight 
forward in the interpretation of the results. In addition, the 
approach presented here is readily available for most 
investigators in MEG research.  

 
 

V. CONCLUSION 
 

Using the methodology proposed in this paper, brain 
surface current density mapping is a powerful tool in the 
analysis of MEG in group studies.  
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